Manuscript Number: GIE-D-10-00395

Title: A DOUBLE-BLIND SHAM-CONTROLLED STUDY OF THE INFLUENCE OF RADIOFREQUENCY DELIVERY (THE STRETTA® PROCEDURE) ON SYMPTOMS, ACID EXPOSURE AND DISTENSIBILITY OF THE GASTRO-ESOPHAGEAL JUNCTION IN GASTRO-ESOPHAGEAL REFLUX DISEASE

Article Type: Original Article: Human Clinical Trial

Keywords: Gastro-esophageal reflux disease, gastro-esophageal distensibility, pH monitoring, radiofrequency energy delivery, sham controlled randomised study, Stretta® procedure

Corresponding Author: Dr. Jan Tack, MD

Corresponding Author's Institution: University of Leuven

First Author: Joris Arts, M.D., Ph.D.

Order of Authors: Joris Arts, M.D., Ph.D.; Raf Bisschops, M.D., Ph.D.; Kathleen Blondeau, Ph.D.; Ricard Farré, Ph.D.; Rita Vos, Ir.; Lieselot Holvoet; Philip Caenepeel, M.D., Ph.D.; Toni Lerut, M.D., Ph.D.; Jan Tack, MD

Manuscript Region of Origin: BELGIUM

Abstract: Background: Several studies have reported symptom relief in gastro-esophageal reflux disease (GERD) patients treated with radiofrequency delivery (Stretta procedure) at the gastro-esophageal junction (GEJ), but the mechanism underlying this improvement is unclear. Objective: To test the hypothesis that Stretta alters GEJ resistance. Design: We conducted a double-blind randomized cross-over study of Stretta and sham treatment. Patients: Consecutive GERD patients. Setting: Tertiary care center. Interventions: Patients underwent two upper gastrointestinal endoscopies with 3 months interval, during which active or sham Stretta treatment was performed in a randomized double-blind fashion. Symptom assessment, endoscopy, manometry, 24 h esophageal pH monitoring and a distensibility test of the GEJ were done before the start of the study and after 3 months. Main outcome measure: Barostat distensibility test of the GEJ before and after administration of sildenafil. Results: 22 GERD patients (17 females mean age 47±12) participated in the study; 11 in each group. Initial sham treatment did not affect any of the parameters studied. Three months after initial Stretta procedure, no changes were observed in esophageal acid exposure and LES pressure. In contrast, symptom score was significantly improved and GEJ compliance significantly decreased. Administration of sildenafil, an esophageal smooth muscle relaxant, normalized GEJ compliance again to pre-Stretta level, arguing against GEJ fibrosis as underlying mechanism. Limitations: Reflux evaluation did not include impedance monitoring. Conclusions: In this sham-controlled study, Stretta improves GERD symptoms and decreased GEJ compliance. Decreased GEJ compliance, which reflects altered LES neuromuscular function, may contribute to symptomatic benefit by decreasing refluxate volume.
A DOUBLE-BLIND SHAM-CONTROLLED STUDY OF THE INFLUENCE OF RADIOFREQUENCY DELIVERY (THE STRETTA® PROCEDURE) ON SYMPTOMS, ACID EXPOSURE AND DISTENSIBILITY OF THE GASTRO-ESOPHAGEAL JUNCTION IN GASTRO-ESOPHAGEAL REFLUX DISEASE

Department of Gastroenterology, University Hospital Gasthuisberg, University of Leuven, Belgium
* Department of Thoracic Surgery, University Hospital Gasthuisberg, University of Leuven, Belgium

Correspondence: Jan Tack, M.D., Ph.D.
Center for Gastroenterological research
K.U. Leuven,
49 Herestraat,
3000 Leuven,
Belgium.
Phone +32 16 344218
Fax +32 16 345939
Take-Home message:

- In a double-blind randomized sham-controlled cross-over study, the Stretta procedure was superior to a sham procedure in providing GERD symptom relief.

- This improvement was not accompanied by improvement of esophageal manometry or esophageal acid exposure on pH monitoring.

- The Stretta procedure was associated with increased resistance at the gastro-esophageal junction, and this may contribute to symptom improvement through decreased reflux volume.

- This increased resistance at the gastro-esophageal junction was not due to fibrosis, as it was reversible by sildenafil administration.
Acronyms:

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEJ</td>
<td>gastro-esophageal junction</td>
</tr>
<tr>
<td>GERD</td>
<td>gastro-esophageal reflux disease</td>
</tr>
<tr>
<td>LES</td>
<td>lower esophageal sphincter</td>
</tr>
<tr>
<td>PPI</td>
<td>proton pump inhibitor</td>
</tr>
<tr>
<td>RF</td>
<td>radiofrequency energy</td>
</tr>
<tr>
<td>TLESR</td>
<td>transient lower esophageal sphincter relaxation</td>
</tr>
</tbody>
</table>
Author contributions:

J. Arts: study concept, patient selection, endoscopic procedures, evaluation procedures, patient follow-up, data analysis, article text

R. Bisschops: patient selection, endoscopic procedures, article text

K. Blondeau: evaluation procedures, article text

R. Farré: evaluation procedures, article text

R. Vos: evaluation procedures, data collection

L. Holvoet: data collection, patient follow-up

P. Caenepeel: patient selection, endoscopic procedures, patient follow-up

A. Lerut: study concept, patient selection

J. Tack: study concept, patient selection, endoscopic procedures, evaluation procedures, data collection, patient follow-up, data analysis, funding, article text
A DOUBLE-BlIND SHAM-CONTROLLED STUDY OF THE INFLUENCE OF RADIOfREQUENCY DELIVERY(THe STRETTA® PROCEDURE) ON SYMPTOMS, ACID EXPOSURE AND DISTENSIBILITY OF THE GASTRO-ESOPHAGEAL JUNCTION IN GASTRO-ESOPHAGEAL REFLUX DISEASE

Department of Gastroenterology, University Hospital Gasthuisberg, University of Leuven, Belgium

* Department of Thoracic Surgery, University Hospital Gasthuisberg, University of Leuven, Belgium

Correspondence: Jan Tack, M.D., Ph.D.
Center for Gastroenterological research
K.U. Leuven,
49 Herestraat,
3000 Leuven,
Belgium.
Phone +32 16 344218
Fax +32 16 345939

Keywords: Gastro-esophageal reflux disease, gastro-esophageal distensibility, pH monitoring, radiofrequency energy delivery, sham controlled randomised study, Stretta® procedure
ABSTRACT

Background: Several studies have reported symptom relief in gastro-esophageal reflux disease (GERD) patients treated with radiofrequency delivery (Stretta procedure) at the gastro-esophageal junction (GEJ), but the mechanism underlying this improvement is unclear. **Objective:** To test the hypothesis that Stretta alters GEJ resistance. **Design:** We conducted a double-blind randomized cross-over study of Stretta and sham treatment. **Patients:** Consecutive GERD patients. **Setting:** Tertiary care center. **Interventions:** Patients underwent two upper gastrointestinal endoscopies with 3 months interval, during which active or sham Stretta treatment was performed in a randomized double-blind fashion. Symptom assessment, endoscopy, manometry, 24 h esophageal pH monitoring and a distensibility test of the GEJ were done before the start of the study and after 3 months. **Main outcome measure:** Barostat distensibility test of the GEJ before and after administration of sildenafil. **Results:** 22 GERD patients (17 females mean age 47±12) participated in the study; 11 in each group. Initial sham treatment did not affect any of the parameters studied. Three months after initial Stretta procedure, no changes were observed in esophageal acid exposure and LES pressure. In contrast, symptom score was significantly improved and GEJ compliance significantly decreased. Administration of sildenafil, an esophageal smooth muscle relaxant, normalized GEJ compliance again to pre-Stretta level, arguing against GEJ fibrosis as underlying mechanism. **Limitations:** Reflux evaluation did not include impedance monitoring. **Conclusions:** In this sham-controlled study, Stretta improved GERD symptoms and decreased GEJ compliance. Decreased GEJ compliance, which reflects altered LES neuromuscular function, may contribute to symptomatic benefit by decreasing refluxate volume.
INTRODUCTION

Gastro-esophageal reflux disease (GERD) is a common disorder with major impact on the quality of life and potential complications (1-3). Proton pump inhibitors (PPIs) are the cornerstone of GERD treatment, with up to 90% of patients becoming asymptomatic on proton pump inhibitor (PPI) therapy (4). A challenging problem remains the treatment of established GERD patients with unsatisfactory PPI response (5). Laparoscopic fundoplication is often proposed as an alternative, but this is not without morbidity and long-term efficacy has been questioned (6-10).

A number of endoscopic procedures, aimed at improving lower esophageal sphincter (LES) barrier function, have emerged over the last decade. In a porcine model, the application of radiofrequency energy increased LES pressure and gastric yield pressure (11). Several studies, including two sham-controlled studies, have demonstrated that radiofrequency delivery at the gastro-esophageal junction (GEJ), also called the Stretta® procedure, induces symptom relief and decreases PPI intake (12-16). Proposed underlying mechanisms include increased LES pressure, decreased transient LES relaxations (tLESR’s), and decreased esophageal sensitivity, but none of these readily explains the symptomatic benefit (12-24).

Recent studies have implicated GEJ distensibility as a pathophysiological factor in GERD (25-29). Increased GEJ compliance is associated with lower LES opening pressure and permits wider opening diameters, facilitating reflux. Several studies have indicated an important role for refluxate volume in symptom generation. Multi-level pH studies and multi-channel intraluminal impedance (MII) studies have shown...
that proximally extending reflux events are more likely to be associated with heartburn(30-32). Hence, we hypothesized that Stretta® might decrease GEJ distensibility, hereby limiting the volume and the symptomatic impact of reflux events. We performed a double-blind sham controlled randomized cross-over study to evaluate the influence of Stretta® on symptoms, esophageal acid exposure and GEJ distensibility in GERD.
MATERIALS AND METHODS

Patients

GERD patients with complete or partial response to high dose PPI were recruited for the study. All patients had a long-standing history of established GERD with typical symptoms and pathological pH monitoring (>4% of time pH<4). The protocol was approved by the Ethical Committee of the University Hospital Leuven, and all patients signed informed consent. Exclusion criteria were age <18 years, a large hiatal hernia (>3 cm) and Barrett’s esophagus or a history of high grade erosive esophagitis (33,34).

Symptom scores

A previously described reflux score was obtained off therapy (23). The severity of 14 different typical and atypical reflux symptoms (heartburn, acid regurgitation, food regurgitation, chest pain, nausea, vomiting, choking, dysphagia, odynophagia, throat ache, hoarseness, coughing, dyspnœa, wheezing) was scored from 0 to 3 (0 = absent; 3 = interfering with daily activity). A cumulative reflux score was obtained by adding all numbers (24).

Ambulatory pH monitoring and esophageal manometry

Ambulatory esophageal pH monitoring and esophageal manometry were performed as previously reported (24).
GEJ distensibility

To evaluate the effect of Stretta® on GEJ distensibility, a barostat assembly was used(25-29). The barostat bag(5.5 * 20 cm, cylindrical shape) was placed across the GEJ under fluoroscopic control. To increase delineation of the balloon, a small amount of barium contrast was swallowed by the patient before the start of the balloon distention protocol(28). The balloon was progressively insufflated by 2 mm Hg pressure increments at 2-minute intervals. Throughout the procedure, intra-balloon volume was monitored and an x-ray image was obtained at each distending level until the patient reported discomfort, or a maximum pressure of 30 mmHg.

Basal distensibility is likely to be composed of anatomical factors(GEJ anatomy), tissue characteristics(smooth muscle and collagen) and neural factors(LES tone). As Stretta® may alter both tissue characteristics(fibrosis) and neural factors(nerve ablation), we evaluated distensibility after elimination of smooth muscular tone. A 50-mg tablet of sildenafil dissolved in water was infused in the stomach through the tip of the barostat catheter. Sildenafil relaxes smooth muscle by blocking type 5-phosphodiesterase, transiently eliminating distal esophageal contractions and LES pressure(35). Twenty minutes later, the distention sequence was repeated.

The main outcome variable of the distensibility measurement is the intra-balloon volume. For validation, we studied the correlation between the intra-balloon volume determined from the barostat measurement, and GEJ diameter, determined from the contrast-enhanced x-ray images of the balloon straddling the GEJ in 7 healthy
volunteers. In addition, we studied the influence of sildenafil on intra-balloon volumes and diameters at the GEJ.

Stretta and sham procedure

The Stretta® procedure was performed as an outpatient procedure after sedation with pethidine and midazolam, as previously reported(24). The sham procedure was performed exactly like the Stretta® procedure, with the same amount of sedation, but needles were not deployed and the catheter was not connected to the RF generator.

Randomization

Patients were randomized in a double-blind fashion into two groups: the first group had the Stretta® procedure first and a sham procedure three months later. The second group followed the opposite sequence. At follow-up after the first procedure, the patient was evaluated by one of the investigators and a study nurse who were unaware of the randomization sequence.

Study Design

Prior to randomization, each patient underwent upper endoscopy, esophageal manometry, and pH monitoring after at least one week PPI interruption. GERD symptom scores and QOL assessment on and off PPI were obtained, and GEJ distensibility was assessed. During a four week treatment period prior to the endoluminal treatment, the patient registered his or her PPI need. Boxes of
PPI (esomeprazole 20 mg, Nexiam®, AstraZeneca Belgium) were provided and the number of pills taken was verified by counting residual pills at each subsequent visit.

Three weeks after endoluminal treatment, patients were asked to stop PPI therapy and they were allowed to restart PPI therapy in case of recurrent symptoms and continue until the next endoscopic procedure, or to try and interrupt treatment again at 3 months after the last endoscopic procedure.

Three months after the first procedure, patients were re-evaluated by repeat endoscopy, pH monitoring off PPI, symptom score off-PPI and assessment of GEJ distensibility. After the second procedure (in a cross-over design) patients were again instructed to try and interrupt treatment after 3 weeks. A follow-up visit with endoscopic evaluation, manometry and pH monitoring was scheduled 3 months later.

Data analysis.

The primary outcome variable was the change in GEJ compliance. Compliance was calculated as the slope of the linear regression of the pressure-volume relationship. Secondary outcome variables were change in symptom scores, esophageal acid exposure, esophageal motility characteristics and resting LES pressure.

Statistical analyses

Data are shown as mean±SEM or as median (interquartile range). Differences were analyzed by two-tailed Student’s t-test, by Mann-Whitney U test, by Chi-square
testing and by two-sided ANOVA. P values <0.05 were considered significant. The study had 85% power to detect a 35% change in compliance.
RESULTS

Patients

Twenty-two GERD patients (17 females, age 46.5±2.4 years, body weight 75.1±3.4kg; history of reflux symptoms of on average 5.1±0.8 years) participated; 11 received Stretta first and 11 sham first. All patients had pathological pH monitoring off-therapy. In Belgium, endoscopy with grading of esophagitis according to the modified classification of Savary and Miller was the basis for PPI reimbursement at the time of the study. The historical index endoscopy before the start of proton pump inhibitor therapy showed no esophagitis in 6 patients, grade 1 esophagitis in 10 and grade 2 esophagitis in 4. One patient had grade 3 and one a grade 4 esophagitis. All patients had a long-standing history of PPI treatment.

Radiofrequency energy delivery procedure

One patient underwent the procedure under general anesthesia; the others were pre-treated with a mean of 6.4±1.9 mg midazolam and 69.0±23.6 mg pethidine. All radiofrequency or sham procedures were performed on PPI therapy. Erosive esophagitis was detected during the initial Stretta® procedure in 5 patients (2 grade 1 and 3 grade 2) and during the sham procedure in 3 patients (all grade 1). The mean procedure time was 36.0±8.5min. The Stretta® procedure was incomplete in 3 patients (2 in the first group and 1 in the second group) for technical reasons (difficulty with needle deployment). In these patients RF could be delivered at only half of the treating points. Transient retrosternal pain, not necessitating analgesics, up to five
days after the procedure was reported by several patients. Throat ache was also reported by three patients after the active treatment and in 2 patients after the sham procedure.

Symptom scores and medication use

Symptom scores were obtained in all patients before and after 3 months. After initial Stretta® procedure, the symptom score improved significantly (14.7±1.5 vs. 8.3±1.9, p<0.005), and was not significantly further altered after the second (sham) procedure (7.8±2.1). In contrast, symptoms did not improve significantly after initial sham treatment (16.1±2.5 vs. 15.6±2.2, NS), but was significantly decreased by the subsequent (active) treatment (7.2±1.6, p<0.05) (Fig.2).

Follow-up endoscopy

At follow-up endoscopy, 3 and 6 months after the initial Stretta® procedure and sham procedure, no significant changes occurred in the number of patients with an erosive esophagitis or in the severity grade of the esophagitis (Table 1).

24- hour pH monitoring

Esophageal pH monitoring off PPI was pathological with a pathological exposure to intra-esophageal pH below 4 in all patients (11.3% (6.3;13.7)). Sham treatment as well as active Stretta® treatment did not significantly alter esophageal acid exposure after 3 or 6 months (Fig.3).
Medication use

At three months there were no differences in PPI use between active or sham treatment. Initial Stretta® procedure followed by sham was not associated with a significant decrease in monthly PPI use (baseline 32.0±4.8 tablets to 3 and 6 months respectively 33.3±2.9 and 32.5±7.0 pills/month, NS). Similarly, initial sham procedure followed by Stretta® did not alter monthly PPI use (baseline 32.1±3.5 tablets to 3 and 6 months respectively 24.0±3.0 and 24.1±5.7 pills/month).

Esophageal motility and GEJ distensibility

LES resting pressure at baseline, 3 months and 6 months did not change after initial Stretta® followed by sham procedure (11.9±1.2 to 13.3±1.9 and 13.7±2.2 mmHg, resp, NS). Similarly, initial sham followed by Stretta® procedure did not affect LES resting pressure (baseline, 3 months and 6 months 15.6±2.1 to 16.3±2.0 and 15.2±3.5 mmHg respectively, NS). Esophageal contractile amplitude and peristaltic nature of the contractions was also not affected (data not shown).

Validation studies of GEJ distensibility in healthy volunteers, showed GEJ compliance, calculated as the slope of the linear pressure-volume relationship, of 9.5±4.7 ml/mm Hg (Fig.4A). Evaluable X-ray images were obtained in 5 volunteers; the distribution of barium around the balloon was inadequate in the 2 remaining subjects (Fig.4B). A significant correlation was found between the intra-balloon
volume and GEJ diameter as determined on X-ray images ($R^2=0.41$, $p<0.0001$). Linear interpolation showed a slope of 0.8 ± 0.1 cm/100 ml for the relationship between the intra-balloon-volume and GEJ diameter. After sildenafil, the slope of the pressure-volume relationship was shifted to larger volumes (Fig. 4), and compliance of the GEJ was increased to 17.5 ± 7.5 ml/mm Hg ($p<0.05$). The correlation between the intra-balloon volume and GEJ diameter was preserved after sildenafil administration ($R^2=0.45$, $p<0.0001$). The slope of the relationship between the intra-balloon-volume and GEJ diameter was increased to 1.4 ± 0.3 cm/100 ml (NS compared to baseline).

Distensibility data were available for 11 Stretta®-treated and 8 sham-treated patients. Missing data were due to balloon leak ($n=1$), patients intolerance ($n=1$) and incorrect balloon position ($n=1$). GEJ compliance was not significantly altered after sham procedure (14.0 ± 5.3 vs. 13.3 ± 4.30 ml/mmHg, NS), but Stretta® was associated with a significant decrease of the compliance (17.8 ± 3.6 vs. 7.4 ± 3.4 ml/mm Hg, $p<0.05$) (Fig. 5A,B). After sildenafil GEJ compliance after Stretta® was normalized to pre-Stretta® level (14.9 ± 3.8 ml/mmHg, NS) (Fig. 5B). No significant correlation was found between changes in GEJ compliance and changes in esophageal acid exposure ($R^2=0.04$, NS) or symptom severity scores ($R^2=0.12$, NS).

Quality of life

The quality of life scores at baseline for the different subdomains did not differ between both groups (Table 2). Three months after the Stretta® procedure, the quality of life score for bodily pain was significantly improved compared to pre-
treatment score (49.5±9.5 vs. 24±4.3, p<0.05). Sham treatment did not significantly affect any of the quality of life parameters. However, 3 months after cross-over active treatment, significant improvement occurred for bodily pain (69.2±7.8 vs. 31.9±4.4 3 months after sham, p<0.03).
DISCUSSION

In the present study, we evaluated the effect of radiofrequency energy delivery at the GEJ (the Stretta® procedure) in a single-center, randomized double-blind cross over trial. Stretta® significantly improved GERD symptoms and decreased GEJ compliance. Sildenafil, an esophageal smooth muscle relaxant, normalized GEJ compliance again to pre-Stretta® level, arguing against GEJ fibrosis as an underlying mechanism.

Several studies assessed Stretta® in GERD (11-16,18). In uncontrolled multi- or single-centre studies, improved GERD symptoms and reduced PPI need were reported, despite small or absent reductions in esophageal acid exposure(12,13,15,16,18). In a randomized sham-controlled study, Stretta® provided significant improvement of symptoms and quality of life(14), but esophageal acid exposure and PPI use did not differ between active and sham. In another multi-center randomized controlled study, Stretta® was superior to sham in allowing patients to decrease or stop PPI therapy(16).

In the present sham-controlled study, we found symptomatic benefit of Stretta® over sham treatment. Unlike previous studies, we already evaluated and confirmed this symptomatic benefit 3 months after the active or sham procedure. The 3-month term was used to enhance patient compliance in a sham-controlled study design, by diminishing the time to active treatment, and was also based on previous observations of rapid onset of symptom relief(24). However, similar to previous randomized studies, this was not associated with a significant difference in PPI
use(14). Using the SF-36 we observed significant improvement in the quality of life, domain of bodily pain after active treatment, either initially or after cross-over.

Animal studies reported that radiofrequency energy delivery at the LES increased GEJ resistance and gastric yield pressure(11). In the present study, we evaluated the effect of Stretta® on esophageal manometry, acid exposure and GEJ distensibility. Like previous studies, we observed no significant improvement of pH monitoring or resting LES pressure(12,24). However, we observed a significant decrease in GEJ distensibility after Stretta®. We assessed GEJ distensibility using a barostat(25-29) and we validated this approach by concomitant fluoroscopic controls and by its responsiveness to sildenafil. Given the collagen-depositing effect of RF energy, the decrease in GEJ distensibility after Stretta® could reflect fibrosis, which is probably undesirable. However, sildenafil, an esophageal smooth muscle relaxant, normalized GEJ compliance back to pre-Stretta® level. This rules out GEJ fibrosis as an underlying mechanism, and points towards changes in neuromuscular control of the LES. The nature of these changes remains to be elucidated in future studies.

Symptom improvement observed after Stretta® cannot be explained by pH or manometry data, or by a placebo effect in this double-blind study. Reduction of esophageal sensitivity, as previously reported by our group could be involved, but we found that improvement of acid exposure was an factor underlying reduced esophageal sensitivity, making this a less likely explanation(24). Decreased GEJ compliance, reflecting altered LES neuromuscular function, may improve symptoms by decreasing refluxate volume(25,27,29,36). Reflux events are more likely to be perceived when the proximal extent is higher and when volume and acid clearance
are delayed (30-32). Reduced GEJ distensibility, resulting in a lower open diameter for the same distending pressure, may be associated with a lower refluxate volume and lower probability of symptom generation. Unfortunately, at the time of the study, MII-pH which provides information on proximal extent of reflux, was not routinely used in our unit. Distal esophageal acid exposure, evaluated by pH monitoring, would not necessarily reflect changes in refluxate volume. Further studies matching analysis of GEJ distensibility to proximal esophageal reflux exposure before and after therapeutic interventions seems warranted based on our observations.
REFERENCES

TABLES

Table 1: evolution of erosive esophagitis before and after initial treatment

<table>
<thead>
<tr>
<th></th>
<th>Grade 1</th>
<th>Grade 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stretta / Sham</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3 months</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6 months</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sham / Stretta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3 months</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6 months</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 2. SF-36 scores before and after treatment; * p<0.05 compared to pre-treatment control value. ** p<0.005 compared to pre-treatment control.

<table>
<thead>
<tr>
<th></th>
<th>Physical functioning</th>
<th>Role physical</th>
<th>Role emotional</th>
<th>Bodily pain</th>
<th>Social Functioning</th>
<th>Mental Health</th>
<th>Vitality</th>
<th>General health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control for Stretta</td>
<td>56.7±13</td>
<td>44.4±1</td>
<td>51.9±19</td>
<td>24.0±4</td>
<td>52.8±5</td>
<td>64.9±6.</td>
<td>50.0±3.</td>
<td>43.6±5.</td>
</tr>
<tr>
<td>3 months after Stretta</td>
<td>73.8±9.</td>
<td>43.8±1</td>
<td>62.5±18</td>
<td>49.5±9</td>
<td>78.1±8</td>
<td>65.5±8.</td>
<td>52.5±6.</td>
<td>61.6±7.</td>
</tr>
<tr>
<td>6 months after Stretta</td>
<td>65.6±12</td>
<td>62.5±1</td>
<td>62.5±16</td>
<td>52.3±1</td>
<td>75.0±7</td>
<td>60.0±9.</td>
<td>42.1±7.</td>
<td>55.0±8.</td>
</tr>
<tr>
<td>Control for Sham</td>
<td>57.5±6.</td>
<td>29.2±1</td>
<td>66.7±13</td>
<td>25.6±5</td>
<td>42.7±7</td>
<td>60.8±4.</td>
<td>53.8±5.</td>
<td>31.4±8.</td>
</tr>
<tr>
<td>3 months after Sham</td>
<td>76.1±5.</td>
<td>33.3±1</td>
<td>85.2±8.</td>
<td>31.9±4</td>
<td>55.6±1</td>
<td>70.7±6.</td>
<td>53.5±6.</td>
<td>42.7±8.</td>
</tr>
<tr>
<td>3 months after cross-over to STretta</td>
<td>80.5±6.**</td>
<td>66.7±1</td>
<td>90.0±7.</td>
<td>69.2±7</td>
<td>73.8±7</td>
<td>72.4±5.</td>
<td>54.5±5.</td>
<td>61.0±9.</td>
</tr>
</tbody>
</table>

* p<0.05 compared to pre-treatment control value. ** p<0.005 compared to pre-treatment control.
FIG.LEGENDS

Fig.1: Overview of the randomised sham-controlled study protocol.

Fig.2. Influence of radiofrequency energy delivery or sham on reflux symptom scores before and 3 months after the procedure. * p< 0.05 compared to pre-treatment scores.

Fig.3. Influence of radiofrequency energy delivery or Sham intervention on acid exposure before and 3 months after the intervention. * p< 0.05 compared to pre-treatment scores.

Fig.3. Influence of radiofrequency energy delivery or Sham intervention on basal pressure of the lower esophageal sphincter before and 3 months after the intervention. * p< 0.05 compared to pre-treatment scores.

Fig.4. A. Pressure-volume relationships at the GEJ in healthy controls before and after administration of sildenafil in 7 healthy controls. B. Representative still frames from videofluoroscopic evaluation of balloon diameter at the GEJ.

Fig.5. A. Pressure-volume relationships at the GEJ in patients before and after administration of sildenafil, at baseline and 3 months after sham treatment. B. Pressure-volume relationships at the GEJ in patients before and after administration of sildenafil, at baseline and 3 months after Stretta® treatment.
Figure 1

Click here to download high resolution image
Figure 3
Figure 5

(A) Pre-treatment Control - - Pre-treatment Sildenafil - - Sham Control - - Sham Sildenafil

(B) Pre-treatment Control - - Pre-treatment Sildenafil - - Stretta Control - - Stretta Sildenafil

Figure 5
Clinical trial registration:

This clinical trial was approved by the ethics committee of the Leuven University Hospital in 2003.
Journal CME Conflict of Interest: Disclosure and Attestation

Lead Author: Jan Tack

Article: A DOUBLE-BLIND SHAM-CONTROLLED STUDY OF THE INFLUENCE OF RADIOFREQUENCY DELIVERY (THE STRETTA® PROCEDURE) ON SYMPTOMS, ACID EXPOSURE AND DISTENSIBILITY OF THE GASTRO-ESOPHAGEAL JUNCTION IN GASTRO-ESOPHAGEAL REFUX DISEASE

Date: 1/24/10

The purpose of this form is to identify all potential conflicts of interests that arise from financial relationships between any author for this article and any commercial or proprietary entity that produces healthcare-related products and/or services relevant to the content of the article. This includes any financial relationship within the last twelve months, as well as known financial relationships of authors’ spouse or partner. The lead author is responsible for submitting the disclosures of all listed authors, and must sign this form at the bottom. Additional forms may be submitted if the number of authors exceeds the space provided.

<table>
<thead>
<tr>
<th>Company</th>
<th>Type of Relationship**</th>
<th>Content Area (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Lead Author: Jan Tack

Email Address*: jan.tack@med.kuleuven.be

x No financial relationships with a commercial entity producing health-care related products and/or services relevant to this article.

<table>
<thead>
<tr>
<th>Company</th>
<th>Type of Relationship**</th>
<th>Content Area (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Author: Joris Arts

Email Address*: joris.arts@pandora.be

x No financial relationships with a commercial entity producing health-care related products and/or services relevant to this article.

<table>
<thead>
<tr>
<th>Company</th>
<th>Type of Relationship**</th>
<th>Content Area (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Author: Raf Bisschops

Email Address*: raf.bisschops@med.kuleuven.be

x No financial relationships with a commercial entity producing health-care related products and/or services relevant to this article.

<table>
<thead>
<tr>
<th>Company</th>
<th>Type of Relationship**</th>
<th>Content Area (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Author: Kathleen Blondeau

Email Address*: Kathleen.blondeau@med.kuleuven.be

x No financial relationships with a commercial entity producing health-care related products and/or services relevant to this article.

<table>
<thead>
<tr>
<th>Company</th>
<th>Type of Relationship**</th>
<th>Content Area (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*We will use email addresses only for questions related to this article

Type of relationship may include: full-time or part-time employee, independent contractor, consultant, research or other grant recipient, paid speaker or teacher, membership on advisory committee or review panels, ownership interest (product royalty/licensing fees, owning stocks, shares, etc.), relationship of a spouse or partner, or any other financial relationship.
Author: Ricard Farre

Email Address: Ricard.farre@med.kuleuven.be

- No financial relationships with a commercial entity producing health-care related products and/or services relevant to this article.

<table>
<thead>
<tr>
<th>Company</th>
<th>Type of Relationship**</th>
<th>Content Area (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Author: Rita Vos

Email Address: Rita.vos@uz.kuleuven.be

- No financial relationships with a commercial entity producing health-care related products and/or services relevant to this article.

<table>
<thead>
<tr>
<th>Company</th>
<th>Type of Relationship**</th>
<th>Content Area (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Author: Lieselot Holvoet

Email Address: lieselot.holvoet@uz.kuleuven.be

- No financial relationships with a commercial entity producing health-care related products and/or services relevant to this article.

<table>
<thead>
<tr>
<th>Company</th>
<th>Type of Relationship**</th>
<th>Content Area (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Author: Philip Caenepeel

Email Address: Philip.caenepeel@zol.be

- No financial relationships with a commercial entity producing health-care related products and/or services relevant to this article.

<table>
<thead>
<tr>
<th>Company</th>
<th>Type of Relationship**</th>
<th>Content Area (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Author: Toni Lerut

Email Address: toni.lerut@uz.kuleuven.ac.be

- No financial relationships with a commercial entity producing health-care related products and/or services relevant to this article.

<table>
<thead>
<tr>
<th>Company</th>
<th>Type of Relationship**</th>
<th>Content Area (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As lead author of this article, I attest that I have received disclosure information from all participating authors as listed above, and have submitted the information completely and accurately as it was reported to me. I understand that typing my name below serves as an electronic signature for the purposes of this form.

J.F. Tack

Type Name (Electronic Signature)
We will use email addresses only for questions related to this article.

Type of relationship may include: full-time or part-time employee, independent contractor, consultant, research or other grant recipient, paid speaker or teacher, membership on advisory committee or review panels, ownership interest (product royalty/ licensing fees, owning stocks, shares, etc.), relationship of a spouse or partner, or any other financial relationship.